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Plane problems on the distribution of a two-dimensional magnetic field in magnetohydro-
dynamic channels with ferromagnetic walls at appreciable magnetic Reynolds numbers
and prescribed flow hydrodynamics are studied. An integral representation for the total
magnetic induction is constructed with the use of a complex influence function describing
the field resulting from a wnit current. This makes it possible to obtain arbitrarily close
approximations to exact solutions of the problems on a digital computer, Influence func-
tions for various channels can be determined by mirror reflections and conformal map-
pings. The method is illustrated by numerical calculations of the distribution of the mag-
netic field for the flow of a conducting fluid along a plane ferromagnetfic wall and the flow
of a fluid in the space between ferromagnetic walls. Calculations are carried out on the
effect of an external circuit and an inhomogeneous transverse velocity profile on the dis-
tribution of the magnetic field.

In conducting magnetohydrodynamic (MHD) channels with finite dimensions, the magnetic field is in
general three-dimensional when the magnetic Reynolds number Ry,) is appreciable. However, if the ex-
ternal magnetic field B, is parallel to the electrode walls and end effects are suppressed (for instance, by
longitudinal, nonconducting partitions at the entrance and exit), then, subject to certain restrictions on the
geometry of the current taps and the distributions of the velocity u and the conductivity o, the equation for
the electric potential when Ry, S 1 has a solution [1] corresponding to a homogeneous electric field. Such
a case is realized, for instance, when the entire surfaces of the parallel electrodes are covered with suffi-
ciently long, highly conducting current taps, pointing in the direction of the z axis, normal to the planes of
the electrodes, and u and ¢ are independent of z. In such a chamnel the distribution of the total two-com-
ponent magnetic field is two-dimensional: B = (B, By, 0) (the current is in the z direction).

The induction B can be found by the method of representing By and By in series form and matching
the solutions at the walls of the channel [2],

More general ways of solving plane MHD problems when the magnetic permeability is homogeneous
{ =p, = const) involve the formulation of an integral equation for the transverse component of B, using
the Green function for the magnetic vector potential [3,4], or the direct insertion of Ohm's law into the
Biot—Savart law [5]. By the latter method it is possible to solve certain problems for plane-meridian
fields in which the construction of the Green's function for the vector potential is difficult [6].

If the lateral, nonconducting walls of the channel are bordered with a steel conductor of magnetism,
the two-dimensional formulation of the problem on the distribution of B becomes more rigorous. There-
fore the restrictions on the geometry of the electrodes in plane problems can be relaxed and the influence
of the external circuit on the distribution of Bin the channel will be different in its dependence on the orien-
tationofthe current tapes. However, when steel walls are present the integral representation of B becomes
more complicated. For some MHD channels of canonical form the effect of steel walls can be taken into
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account by the method of reflection of the currents in the channel and use of the Biot—Savart law, counting
the reflected currents as real also. Application of conformal mapping makes it possible to widen the class
of problems that admit of an integral representation for B.

1. Flow of a Conducting Fluid along a Plane Ferromagnetic Wall, Let the fluid flow along a wall with
magnetic permeability u,, situated in the region q = 0 of the complex plane s = p +id. Everywhere above
the wall 4 =pu 4. The quantities u, and 4, can be commensurate (when the wall is made of saturated or mag-
netically stable steel). For q > 0 there is a plane external magnetic field Bg = Bgp + iBgq. Currents flow
in the region 0 = p <I,* 0 <q =< §(p), where & (p) is the upper wall of the channel or the free boundary of
the stream, and close symmetrically with respect to the working zone as |s|— ®. The conductivity o (s) and
the velocity u(s) = up + iug of the fluid are prescribed. It is required to find the total magnetic field B(s)
for g > 0. Such a problem may be encountered in the flow of a conducting fluid in an open flume with a ferro-
magnetic floor [7], in the study of pellicular MHD flows [8], pumps with widirectional inductors, etc.

The boundary conditions require the continuity of Bg and B /i on q =0, the continuity of —o < p < ©,
and By, and By on the remaining boundaries of the region contammg currents, and attenuation of Bj as Is]——
. Account can be taken of the influence of the steel wall if for every current di =j(s')dp'dq' ing> 0O a
fictitious reflected current dij in q < 0 is constructed so that the boundary conditions are satisfied. The

magnetic self-field dB;(s) at a point s(q > 0) of a current j(s')dp'dq' at the point s'(@ > 0) is

dB; = L (s, 8) j () dp'dy’, L (s, ) = Ly + i, (1.1)

where L(s, s') is a certain influence function that takes account of the real and the reflected current, Using
Sirl's well-known solution of the problem (see, for instance [9]), we obtain

_ 1 7' ~q _Be—m 9+q

L"—Zu[(q-—q’)’ﬂp—-p’)’ B2+ (g +q’)"+(p—-p’)’] (1.2)
=4 p—p P — p—p

Lo = 2::[(q—q’)*+(p—p’)2 T aTE <q+q'>*+(p—p')2] 1.3)

The field Bj(s) of all the currents in the fluid is determined as
Bi(s)=B(s) = B.(s) = [ L(s, 5)j(s")dp'dq’ (1.4)
Inserting Ohm's law j = ¢ [E + Im @B)] into this, we arrive at the complex integral equation

" BE) ~ [L(s () Im @) BN dp'dg = B(s)

+ (L(s, )0(s") Edp'dg’ (1.5)

If E is independent of s, then, under the conditions that ¢ (s), u(s), and E are bounded and that L{s, s')
is integrable, Eq. (1.5) is of Fredholm's type., It is equivalent to a system of two real integral equations
for Bp and Bg» which can be solved by numerical methods. If (1.2) and (1.3) are inserted into Eq. (1.5), the
latter is equivalent to the Biot—Savart law in which the real currents in the fluid [first terms in (1.2) and
(1.3)] are taken into account as well as the reflected currents [second terms in (1.2) and (1.3)]. It is char-
acteristic that as s' — s the second terms in (1.2) and (1.3) vanish and the function L, s') becomes the
same as that for a line current in a nonmagnetic mediums: '

’ 1 —p ’ ne1-1/2
L(s,s =Eexp(iarcctgf_’q',){(q—q)“r(p-—p)21 !

From this it follows that the singularity of the kernel of the integral equation (1.5) is a simple pole

and consequently the Fredholm theory is valid for (1.5). If up> uqy, (1.5) reduces to a single real Fredholm
integral equation with an improved kernel singularity

13(p)

‘B, (s)[l — Ry § | Lyls s)o(s) up(s") dp’dq'] (1.6)

*The currents are normal to the s plane.
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= B, (s) + R, E S 5‘ L, (s, s’)c(s’)dp'dq'
o 0 )
and a definite integral for Bp s)

18(p)
By(s)=Ru | | [Lp(s,8)5() up(s) By (s') + ELy (s, )5 (s') dp'dg’ @.n
1]

0

Here all linear dimensions are dividedby !, B by By, 0 by 04, u by yy, E by y,B,, where reference
quantities are distinguished by the subscript zero, and Ry, = uy0 oyl .

Using relations (1.6) and (1.7), we can obtain arbitrarily close approximations to exact solutiqns of
the problem by numerical methods,

2, Flow in a Strip. The fluid moves in an infinite strip 0 < y = & (5 = const) with the velocity uy &,y)
in the field B = By +iBy. We have = p;in 0 <y <8, gy =w iny= 4§, y= 0. Currents flow in the region
0=x =1,0=y =6 and close through an external circuit, arranged either symmetrically to, or to the
left or right of the working zone.

This model corresponds, for instance, to the quasisteady motion of a short, longitudinal cluster be-
tween long, linear electrodes placed in the gap of an electromagnet with steel poles, or to the motion of an
axisymmetric annular piston in a small gap between coaxial steel walls. If continuous flow in a channel is
considered, then the presence of nonconducting longitudinal partitions in the regions x < 0, x > ! is assumed.
In the last case the extension of the steel walls outside the region 0 =< x < ! will be limited. However, as
indicated by approximate estimates, the effect of the edge of a pole is practically absent in a gap of width 6
at distances larger than 6 from the edge when Ry < 10 [5].

We assume at first that the external circuit connected to the electrodes is arranged symmetrically
with respect to x about the working region. Then the boundary conditions for the problem are the following:
Bxy=0ony=0,y=290; Byg and By, are continuous on the boundaries x = 0, x = I ; and Biy|x=oo = —Biy|x=—4°-
As in Sec. 1, the problem can be reduced to an integral equation if an influence function in a relationship of
the type (1.1) can be found. Construction of L(z, z') can be carried out by the method of reflections [9]; how-
ever, a more direct way involves the conformal mapping of the gap 0 = y < § in the plane z = x + iy on the
upper half-plane s = p + iq by means of the function s = exp (7z/6). This enables one to make immediate
use of solutions obtained earlier. As the influence functions L are analytic everywhere in the z and s planes
with the exception of the points s = s', z = z', they can be expressed in terms of a complex potential &

Ls (S, sl) = dqzs(S) 3 Lz (Z, Z') = d(iz(z) (2 .1)

{the bar denotes complex conjugate).

Because of the invariance of the Laplace operator we have @ (z) = @ [s (z)] whence, after differentiation
and conversion to conjugate values, we obtain
ds

Ly(z,2) = Ly(s, ") =y L= Ly +1iL,

L.o— __i[ sinx (y -4 ¥)/ 6 + sinst (y — ) /6 ]
x 48 chit(zx — ') /& —cosn(y-+y)/d cht (¢ — 2V /8 — cos{y=-=y)/d 2.2}
I — 1 shm(z—z)/0 + shat(z—a')/8
”'4—6[chn(z—x')/(’)—cosn(y+y’)/6 chn(z—x’)/é—cosn(y——y’)/é] 2.3)

It is evident that the form of the fumction Lz, z') ensures that all boundary conditions of the problem
are satisfied. :

Asymptotic estimates enable one to isolate singular terms in (2.2) and (2.3), these having singularities
of the same order as those that occur in problems that do not involve steel walls.

637



Suppose now that the external circuit is not symmetric with respect to the channel, and is located at
a sufficient distance from it. In the problem under consideration the influence of the external circuit cannot
be neglected since By does not die out as x —+ « , From physical considerations it follows that the remote
external circuit affects only the distribution of By in the channel, but not that of By [this, in particular, is
evident from 2.2) and 2.3) if X' = £ « ].

Every current element in the working zone, flowing into the external circuit (which also comprises
the electrodes and the current taps), produces a certain homogeneous, transverse field in the working zone,
of which account can be taken by writing

LY =L, 4 1/48

where Ly is defined by (2.3) and y = const. If the external circuit is closed to the right of the channel the
entire current to the right of x = —« vanishes and consequently L(g) w =0 when y =2, If the external
circuit is closed to the left of the channel, then y =— 2,

X = -

When constructing an integral equation for By, on the basis of relationships of the type (1.4) and (1.5), one
must keep in mind the fact that the electric field strength E depends on the operating conditions of the chan-
nel and on the parameters of the external circuit and cannot be prescribed arbitrarily. Let the external
circuit have a total conductivity ge and a source of emf &, opposed to the emf of the channel. Then, accord-
ing to the method of nodal potentials of circuit theory, we have

13 13

1

= ~ =\ waByodndy - -1 =), &= 4-\(odzay 2.4
L] 00

where g; is the internal conductivity of the channel, h is the distance between the electrodes, and n = gi i/

@©; +8¢). We shall convert to dimensionless parameters by dividing & by usBgh, and gj by 0,12/h (see Sec.1).
In accordance with (1.5) and 2 .4) the distribution of By in the channel is described by the following Fred-
holm equation with kernel having a simple pole and improved singularity:

135 138 )
B, ()|t —Rn SSK(Z #)da'dy’| R,,,SKK(Z, 2') [B,(2) — B, (z)] dz'dy’
00 1] 0
= B,,(s) — Rpme(1 — u)j j 5(z') LY (3, 2') dx'dy’ @.5)
00
where the kernel is

5
K (3, 2') =5 (2" ) ur(z) [Lff’ — —:— Scs (z) Lf,”dx'dy’]
]

°Q/:u-n

For £¢ 5 1 the channel consumes power from the external circuit and operates in the propellent (pump-
ing) mode. When 0 =< ¢ £ 1 a drain of power from the channel into the external circuit occurs.

If ¢ = 0 ) and uy = ug &) the problem has a one-dimensional solution for By since Bx = 0 everywhere.
In fact, in this case the well-known equation for the inductions gives for By

aB
v:B . — Wou x

= =0 2.6)

As Bx = 0 on the walls and at x = + w, it follows from the uniqueness of the solution of the Dirichlet
problem for (2.6) that By = 0.

3. Flow in an Exit Cone. The fluid moves in a plane, conical diffusor with ideally ferromagnetic
lateral walls* at ¢ = 0,9 = ¢, = n/n @ =const), 0 =p < =, Production of a conducting flow in the chan-
nel is accomplished either by the introduction of the working medium through small holes in the walls or by
a chemical reaction in the neighborhood of p = 0. The velocity of the medium is directed radially: u, ©,9);
electric currents flow in the region p; =p = p, +! in a direction perpendicular to the plane of the problem
(axisymmetric model) or through an external circuit as p — .,

*Polar coordinates are employed.
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The boundary conditions are similar to those in the previous problem with the difference that now the
self-field B; of the currents in the channel dies out at infinity. Mapping the channel sector in the plane of
w= ¢t +in = pel? on the strip 0 = y < 6 in the z plane by the function z = (¢ /7)nln w and using the expres-
sions (2.2) and (2.3), we obtain

Ly(o m')=_-__"_[ sinn (@ + 9')
e anp 0.5 {(p / ') + (0'/p)"] — cos (@ + )

+ sinzn{p — Q)
0.5[(/p"\"+ (0 / )"} — cos n (§ — @’)}
Lo (0, 0') = ZEI:L? { e (e /,p')"n— /" :
g /e A+ (' /oY — 2c05 2 (P + @)
(/o) — @ /o) }
(/e (0" /)" —2c0s n (P — @)

As the velocity of the medium is radial, the problem reduces to an integral equation for Bq, and a
definite integral for By .

4. Flow in a Half-Strip. The problem corresponds to the model of Sec. 2, but the magnetic circuit is
now closed on the left of the working zone: p =, in the half-stripx > 0, 0 < y < 6 and 4 =« outside the
half-strip. Currents flow in the region x, < x < X, + I, 0 < y < 6 and are closed at infinity. The boundary
conditions correspond to those of the problem of Section 2, hut for every current di' = j{')dx'dy' in the
fluid, its magnetic field dBiy(x) at large values of x is equal to ,uodi'/ 6 and dBix — 0. This permits us to
construct L (z, z') = Lg + iLy in the form

I __i[ sinw (y+9)/8
T 4dlchm(z+2)/8—cosm(y+y)/8
+ _ sinm(y—vy)/b " sinm (y +y)/8
chale £ 2)]8—cosn(y—y) /6 | chan (& —a)/0—cosn(y+¥)/0
sina(y —y)/8

+ chn(z—z) /0 —cosn(y—vy)/ 0
L _l{ shw(x-+-2")/8 sho(x L2}/ 8
VBB R G #)/0—csa g+ ¥)/8 | hn (s T #)/b—coswt vy —7)/8
+ shx(z—z')/8 . shn(z—=z/08 J
cha(z—2')/6—cosn(y+9)/6 { cha(x—a)/0—cosn(y—v )6

As in the case of Sec, 2, the problem reduces to an integral equation for By and a definite integral
for Byg.

5. Some Generalizations and Numerical Calculations. The procedure developed above can be applied
for arbitrary channels with ideally ferromagnetic walls @ ¢~ @), allowing mappings onto canonical regions
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and for channels with walls having finite permeability if one
succeeds in constructing a complex analytic influence function
L (P, M) describing the field at a point P due to a unit current
at M. Methods for the construction of L for various problems
with o = and with finite o are well known in applied elec-
tricity ([9, 10] et al.). Thus, the question concerns a Fred-
holm integral representation of a nonanalytic function (fields
for Ry, 5 1) in terms of analytic functions, the theory of
which has been developed quite fully.

In a number of plane problems with ps — « the integral
representation for B can be obtained by using the Green's
function G for the vector potential, the components of L being
expressed in terms of derivatives of G with respect to the
longitudinal and transverse coordinates. However, in problems
involving steel walls G must be constructed for a Neumann
problem (because of the condition requiring the tangential com-
ponent of B to vanish on the wall) and this often leads to diffi-
culties, For finite u » the derivation of G is even more com-
plicated. For example, construction of G for the model of
Sec. 1 with commensurate 4, and 4, is a difficult problem.

In every case the theory developed above, based on
physical ideas, gives a more direct and general way of solv-
ing problems,

If the analytic determination of the fimction L is impos-
sible, it can be found approximately in the following way. Into
a MHD channel without the working medium (or into a model
that is geometrically similar to it) a current-carrying loop is
introduced that corresponds in shape to a current element in
the channel with its electrodes, and L is found for a selected
mesh of points with the loop placed at various positions by
direct measurement of the field of the loop.

As illustration of the results obtained, calculations of
the fields of the problems of Secs. 1 and 2 were carried out.
It was assumed that Bg = By = const, in the steel 4 — «, and
that the velocity of the fluid had only one component and was
parallel to the steel walls. The total field was determined
only for the region where j # 0.

In the problem of Sec, 1 it was assumed that E =0
(short-circuit or axisymmetric model)

6 = 6, -+ parc tgz, tga <€ 1, 0= const, up = 1/8(p)

Results of calculations on a "NAIRI-2" computer for
the case §, = 0.1 are shown in Figs. 1 and 2. Figure 1 has
curves for Bqf = 0) (curve 1 for Ry, =1, 2 for Ry = 3, 3 and
4 for Ry, = 5; solid curves for a = 0, dashed for @ = 7°) and

curves for Bp(p,ﬁ) curve 5 for Ry, =5, 6 for Ry, =1). With

increasing Ry, demagnetization at the entrance and magnetiza-
tion at the exit are increased, and the maximum of By, o)
moves toward the exit. Figure 2 shows curves for Bq(Q)
(curves 1-4) and for Bp(q) fcurves 5-8) at Ry, =5 and @ =0
curves 1 and 5 for x =0, 2 and 6 for x = 0.25, 3 and 7 for x =
0.75, 4 and 8 for x = 1). The character of the change in Bq @
at the entrance is opposite to that at the exit, and Bp (@ in-
creases with distance from the steel wall.



In the solution of the problem of Sec. 2 a case was considered in which
y the flow (piston) was separated from the steel walls by nonmagnetic clearances
of width A. This problem, in addition to instances specified earlier, may be of
interest in connection with the motion of a plane free jet between steel pole
J pieces. It was assumed that
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Results of the calculations are shown in Figs. 3-7. Figure 3 has curves
for By, 8/2) withy =2 (curve 1 for Ry =5 and A =0, 2 for Ry = 3 and A =0,
3 for Ry =3 and A =0.125, 4 for Ry, =2 and A = 0.5, 5 for Ry, =3 and A =

Fig. 7 0.25, 6 for Ry = 2 and A = 0.25, 7 for Ry, =2 and A = 0.375). Growth of By(x)
is more rapid for larger Ry, and smaller A, Figure 4 has curves for By (y) and
ABy () = [By ) — By(5/2)] /By(6/2) with Ry = 2 at various cross sections of the channel =0, 0.25, 0.5,
0.75, 1). The dashed curves correspond to A = 0.25 and the solid curves to A = 0,125, The scales of By and
ABy are referred to the cross section at x = 0.5. Figure 5 has curves of By &) with Ry, = 2 for different
values ofy=const. (small curve 1 for y = 0.756, 2 for y = 0.6256).
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In the case of an inhomogeneous velocity profile uy (v) the magnetic field in the channel is also inhomo-
geneous even for A = 0. This conclusion is confirmed by curves of ABy ) for various values of x and a
Poiseuille profile ug ), shown in Fig. 6 (curve 1 for x =0, 2 for x = 0.5, 3 for x =1; the plane y = 0 in
Fig. 6 containg the axis of the channel). In this case the character of the change in AB, (y) at the entrance
is opposite to that at the exit. In Fig. 7 the three upper solid curves of By(x, 6/ 2) were constructed for a
Poiseuille profile ux({y), Ry = 2, A =0 and 7y = 2 and for various values of » (curve 1 for n =0, 2 for » =
0.2, 3 for n = 0.5). As 1 increases, the role of the induced field diminishes, TFor comparison similar
(dashed) curves of By(x, 6 /2) for a homogeneous profile giving the same mean flow rate are shown in the
same figure. It is evident-that the field distortion is larger for the Poiseuille profile. The dashed curves
were calculated from an integral equation and one-dimensional theory (see, for instance, [5]). For Ry =5
the disagreement did not exceed 3%. Curve 4 in Fig. 7 was constructed for A = 0, ux = const, ¢ = const,

€ =0, Ry =5, ¥ =0 (symmetric external circuit), and curve 5, for the same conditions except withy =—2
(external circuit to the left),

In conclusion the authors thank G. A. Lyubimov, A. B. Vatazhin, V. V. Gogosov, and A. E. Yakubenko
for useful discussion of the formulation of the problem and of results of the study.
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